
AD 1147A-AI46 417 ALGEBRAIC TECHNIQUES IN SYSTOLIC ARRAY DESIGN(U) NAVAL i/1
OCEAN SYSTEMS CENTE SAN DIEGO CA G E CARLSSON E L

OCEA , A E 4 NOSC-TR942

UNCLASSIFIED

/ 121 N

EEEEllEliiE
IEiiEEiiEEEiiEEE

EEEEiiiiiiiiiiEEl EN

L2 112.2iii ii ,_____.o _

liii 11111.8
11111L25 11II1"__---4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARS lq" A

, m .=====... • e

00
o a
z

Technical Report 942

ALGEBRAIC TECHNIQUES IN SYSTOLIC
ARRAY DESIGN

' G. E. Carlsson
Department of Mathematics, UCSD

(H. B. Sexton, M. J. Shensa
NOSC, Code 6322

-, C. G. Wright
Department of Mathematics, Duke University

February 1984
Final Report

Approved for public release; distribution unlimited.

LLJ

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152

84- 10 04 003

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

J.M. PATTON, CAPT, USN R.M. HILLYER
CommffW% Technical Director

Administrative Information

The research described in this report was done during fiscal year 1083 under
the Independent Research/Independent Exploratory Development Program. The
authors worked collectively, but took responsibility for separate chapters. The
work was funded under program element 61152N, project ZR00001, task area
ZRO00010I, and task area 632ZM6.

Released by Under authority of
P. M. Reeves, Head R. H. Hearn, Head
Electronics Division Fleet Engineering Department

Acknowledgements

We wish to thank Debbie Watson of NOSC COde 632 for her expert typing
of this report and her patience and ingenuity in making revisions. We wish to
thank Jim Zaun, Code 632, for his help in subduing troff and mm, and in get-
ting this report into a presentable form. Finally, we wish to thank Dr. Eugene
Cooper, Code 013, for his continued support of this work: financially, as head of
NOSC's IR/lED program, and morally, by his encouragement and interest in our
project.

UNCLASSIFIED

REPORT DOCUMENTATION PAGEt
I& WWM 15CUY CLABNCATION b RFI6O RIOR

UNCLASSIFIED

22 SCURTY CLASSIFICATMO AUTHORITY ITIUIWVILSL FRPR

2b DELd SSIFICATION/DOWNGRAOII SCIIIEL

4 PERFORMING ORGAWTI1ON REPORT NUMIERIS) 6 MOMITORIN O RGAIiWAIO RWPMR NuMSEWS)

TR 942

6. NAME OF PERFORMING ORGANZATION ObI OFFICE SYM§OI. 7. NAME OF MONITORING ORGAMIZAION

Naval Ocean Systems Center

St ADDRESS Waoy. Stlet sold ZIP CDCW 7b ADDRESS (Cav. State WWd ZIP Cod.)

San Diego, CA 92152

Be NAME OF FUNONG/SPONSORING ORGANiIZATION 9b OFFICE SYMEOI 9 PROCUREMENT INSTRUMENT IOENTIFICATION NUINSER

Independent Research!
Independent Exploratory Development
at ADDRESS ICoyz State &W~ ZIP Cof 0 ORC F UDIGNUBR

615NZROOOO1 ZROOOO1OI 63Z9

I I TITLE (Wnk.* sa-d,,t CWflat-at)~

ALGEBRAIC TECHNIQUES IN SYSTOLIC ARRAY DESIGN

12 PERSONIA) ASITROPISI

G.E. Carlsson, UCSD;. H.B. Sexton and M.J. Shensa. NOSC; C.G. Wright. Duke U.
134 TYPE OF REPORT 13b TIME COVERED 1 4 DATE (P REPOR Iyur. MDa ,j PAGE COUNT

Final FROM Oct 82 TO.Sep_83 February 1984 39
IS SUPPLEMENTARY NOTATION

7 COSATI CODES 15 UJC iS(8mea.,ctei~c.avm~W'4'N~,..~

FIELD GROUPGOU Parallel Processing Graphy Theory
Communications Network Automata Theory
Hardware Description Language

19 ABSTRACT (CatV~na atn maw" i dteconar' an~d,. 41a b Waveh nmber)

This report summarizes the work of the FY83 NOSC IR project "Algebraic Techniques in Systolic Array Design." The goal of the
project was to develop an abstract mathematical framework general enough to include the standard mesh-connected architectures as well as
more complex ones such as the cube-connected cycles, but restricted enough that the algebraic techniques used (sporadically) in the analysis
of Systolic arrays could be generalized and applied,

4t-ia-eucontention that node-transitive networks, based especially on Cayley graphs, offer such a framework, though whether such
networks provide a truly viable theory for modelling synchronous parallel computations remains to be seen. This report describes how to
restrict the theory of synchronous parallel architectures to such networks, as well as demonstrating the applicability of algebraic techniques
to such networks. It also describes various tools, such as the programming language MHDL, which were developed to aid in the study of
these networks.

20 OISTRISUTIOWAVARMLITY OF ABSTRACT 21 AISPA SEU111 LSIICATO Agency Accession
r&] UWACLSSIP4UMJWTG Q3 SAMS ASP" 0 DTIC usas~ Unclassified

22& NAME OFI 22b TELPNM fomtoei Arm. Ce.W lu OFFICE SVM~OO

H.B. Sexton 1(619) 225-22871
DD FORM 1473, JAN 93AR1MNMYKUE NI XASE UNCLASSIFIED

..

Contents

1. Introduction .. I
1.1. Background .. I
1.2. Chapter Summaries ... 2
1.3. Remarks ... 2

2. Preliminary Concepts ... 3
2.1. Introduction .. 3
2.2. Synchronized Modular Networks 3
2.3. Graphs and Networks .. 5
2.4. Sorting ... 7
2.5. Matrix Tridiagonalization 8
2.6. References ... 9

3. M atrix Tridiagonalization .. 10
3.1. Introduction ... 10
3.2. Problem Statement .. 10
3.3. An O(N log N) Algorithm 11
3.4. Derivation of a Lower Bound 13
3.5. Remarks .. 14
3.6. References .. 15

4. Regular and Cayley Graphs 16
4.1. Introduction ... 16
4.2. Summary of Results .. 16
4.3. Detailed Description of Results 17
4.4. References .. 27

5. Modular Hardware Description Language 29
5.1. Introduction ... 29
5.2. MHDL .. 29
5.3. Description of the Language 31
5.4. Possible Improvements .. 35
5.5. References .. 38

Accersion For

NTIS TA&I

ju.,tI; ~rie:

co__-.

Dist Spj

1. Introduction

1.1 Background

Originally, when we began this project we intended to develop a decomposition
theory for implementing parallel algorithms on "standard" mesh-connected systolic ar-
rays. We believed we had good reasons for feeling that this problem was a highly alge-
braic one, and that various ideas could be used to arrive at systematic design pro-
cedures. We still agree with this point of view, but the emphasis of our work has
changed considerably, for reasons which I hope to make clear.

There were two problems which we hoped to solve by our algebraic approach. The
first is the problem of sorting N elements by pairwise exchanges, and the second, that of
tridiagonalizing a symmetric matrix by Givens rotations. (These problems are discussed
farther in Chapters 2 and 3, respectively.) While we were able to find an optimal solu-
tion to the first problem for a linear array, we were unable to do so for a rectangular
one, and we failed similarly for the tridiagonalization problem. From these experiences,
it became clear to us that there were extremely difficult "constrained parallel complexity
problems" which needed to be solved. That is, while there is a reasonably well-
developed theory of computational complexity for single processor computers and some
theory for unrestricted parallel computation, there is almost no theory for the complex
computations subject to communication constraints imposed by a processor network.

It is our hope that the concepts which we are now exploring will help to understand
problems of parallel computation, especially ones which arise in parallel architectures
with limited inter-processor communication. We would, of course, hope to develop
provably optimal architectures with such a theory, but this seems to be extremely
difficult for all but the simplest of problems, so for now our work focuses on developing
"better" architectures. First, we are searching for a reasonable framework in which to
formulate a version of such a constrained theory of complexity and, in particular, for a
class of communication networks general enough to contain optimal or near optimal net-
works for standard problems such as sorting, matrix multiplication, FFT computation,
and for which the fabrication costs are acceptable. It is this which has led us to propose
Cayley networks (see Chapter 2) as a possible class, but we feel that it is far too soon to
have any confidence that this is a final choice. Second, we are attempting to formulate
mathematical questions which are equivalent to determining lower bounds on the time
complexity of the sorting and tridiagonalization problems for a given class of arrays, and
to solve these problems for mesh-connected arrays. Third, we

are attempting to use the insights gained in our theoretical work to develop architec-
tures to implement various algorithms in efficient ways. Finally, in the course of all this
work we are attempting to develop tools to aid ourselves and others in future work in
these areas; our major such tool, so far, is our high-level simulation language MHDL,
which is still in its earliest stages of development.

1.2 Chapter Summaries

Preliminary Concepts: Chapter 2 gives the definitions and notations to be used
throughout the report. In an attempt to be at least formally self-contained, we shall give
definitions of a number of elementary mathematical structures, such as groups and
graphs, but we shall provide relatively little intuition for many of the concepts we
define. We will attempt to give adequate references for all concepts which we use, how-
ever. '

Matrix Tridiagonalization: Chapter 3 concerns the problem of tridiagonalizing a

real symmetric matrix by using Given's rotations acting in parallel. We derive a lower
bound for a class of TD algorithms.

Regular Graphs and Cayley Graphs: Chapter 4 contains some of the results we ob-
tained in our study of graphs. In particular, we describe the results of our heuristic
search methods for regular graphs, and introduce the concept of a Cayley graph.

MHDL: Finally, in Chapter 5 we describe the Modular Hardware Description
Language. This is a high-level simulation language which we have defined for testing al-
gorithms for our general class of Synchronized Modular Networks. While this language
is currently working "as advertised," it is very much under development and subject to
drastic change without notice.

1.3 Remarks

Some features of the organization of this report seem worth comment. Rather than
have an index of notation, as is more typical of mathematical work, we have included a
list of symbols under the heading "Notation" in the regular index. Also, instead of a sin-
gle bibliography, each chapter has a closing section containing references., Consequently,
any citation within a chapter is to one of the references listed at the end of the chapter.
Finally, it may seem to the reader that it is rather absurd to call the major divisions of
such a short document "Chapters"; rest assured that it does to us, as well, but for rea-
sons too boring to mention here it was expedient.

L This is due, principally, to having the various chapters written by the diferent authors.

2

2. Preliminary Concepts

2.1 Introduction

This chapter introduces the principal mathematical concepts of this report. As this
document is intended to serve as a basic reference for our later work, concepts will occa-
sionally be introduced somewhat baldly, and in some cases receive no further develop-
ment here.

At the most abstract level, we are interested in developing a theory for a certain
class of automata, which we call synchronized modular networks, or SMNs. These auto-
mata are defined in Section 2.2, but aside from some trivial results which we prove
there, no further mention of these objects will be made here. However, being mathema-
ticians, we need to know precisely what we are talking about, even when it is irrelevant,
so we present these definitions.

Section 2.3 defines various types of combinatorial graphs which were studied as pos-
sible communication networks and parallel computation architectures. None of these
ideas is new with us and any originality in the presentation is the result of the ubiqui-
tous random processes which influence all our lives.

Section 2.4 discusses briefly the concept of communications compatibility between
architectures and algorithms, and illustrates this concept with some examples drawn
from parallel sorting problems.

2.2 Synchronized Modular Networks

The concepts discussed here regarding Synchronized Modular Networks are drawn
from the theory of automata. They are given here simply to provide a precise basis for
the rest of our mathematical work, rather than as a starting point for our investigations,
as we have been unable to prove much of interest within this very general framework.

Definition 2.2.1: An abstract machine M is a quintuple (/,X,O,6,0) where

1. 1 1 x ... x , ,

01 OX ".. X Or

&:xX -X,

I'3 _

and

i3:X-. O.

1, 0, and X\ are referred to as the input, output, and state sets, respectively, of M. 6 is
the next state or state transition function, and 0 is the output function. Intuitively, the
machine cycles as follows:

M is in some state z,, receives input a , moves to internal state 6(a1,z1) = z2, outputs
O(z2) and waits in state h for more input.

We say state y is reachable from state z if there exist a, a. al, z, . .. czx with
z = z1, ,+ -- ta,,z,), for i= ... n-I and y =-Ma,zj. Assume all states are reachable
from one another, and we shall suppose that X has a designated x. which we shall call
the initial state.

Also, we associate with a machine M the sets I , { i, ... ik Pi) and

to { O e),,k }, which we call the set of input and output leads, respectively. If we

have some indexed family M, of machines, the leads will be denoted lAa), . . . , 0,(a), or
Ife. ,. o 01., etc.

For our discussion we assume the existence of some set P of primitive machines, or
processing elements (PEs).

Definition 2.2.2: Let M be some set of abstract machines. Then N = (lF,1,Oc) is a
synchronized h-modular machine, or an SMN of Af-type, iff the following hold:

a. I is a finite index set.

b. P. i-.A.

c. f and 0 E are input and output sets, respectively.

d. r is a bijection where

e:IAE)U(UIOfaJ -cAE)U{UlAak

such that the intersection of c(IAE)) with 1o(E) is empty.

We denote by c, the projection of e into If(a), and co the projection of c into

e has a natural extension from leads to

C: iEXX 0" OEX 1 X 1 .

We use this map without further comment.
2 That I, as we ,aid ber, .. =. X I"' V, etc. The leads of IE and 0E are denoted 1A E), OA e), etc. We shall as-

some that EI are not in 1

4

Proposition 3.2.1: If N is an SMN of A-type, then N is an abstract machine.

Proof: We associate N with the machine

(16, x o, 08,4 ,0,)

where" p,4x) = cc4o(<8,5)>). Next, if O'd, and <z> belong to X= XXo, and if 6o is the

state transition function for Ma, then
6, <>o= 6o(o(a',<i o(zo)>)).

Definition 2.2.3: If P is a set of machines, then P' denotes the set of SMNs of P-
type.

Proposition 2.2.2: Pi' = P1.

Proof: It follows directly from the definition and the previous proposition.

Remarks:

a. We generally assume that we inhabit the universe of SMNs of P-type for some
fixed P, and suppress all mention of P.

b. We refer to a conjunction of two SMNs, M, and M2, as an SMN formed by con-
necting some outputs of M2, and vice versa. A cascade of M, with U 2 is a conjunc-
tion where no outputs of Mg are connected to M,.

e. It is obvious that every SMN with n PEs can be formed by the conjunction of an
n-i element SMN with a single PE.

2.3 Graphs and Networks

Defining a number of standard concepts from the theory of combinatorial graphs,
we use them to relate to problems in networks in this and the next section. As these
concepts are very abstract, the mathematical questions about networks which can be
formulated in terms of them are much simpler than the actual details which would arise
in practical implementation of a network of synchronized processors. However, these
questions are already extremely difficult in many cases, and in some sense we feel that
their generality helps to ensure their usefulness. Thus, while intelligent readers will
doubtless see many ways in which these formulations are inadequate in helping to
understand real parallel processing networks, we hope that they will feel the solution of
problems posed in this report will be of real use in gaining such understanding.

We begin by defining a graph (also known as an undirected graph). A graph r is a
pair (VE), where Vis a set of points known as vertices or nodes, and E, the edge set, is a
set of (unordered) pairs of of nodes (v,w), where vw belong to V. We think of the edge

SNotice Shat we make u of te fact that tde peimage of co is a subset of U 1o(a).

6a

(v,w) as being a line segment connecting the points v and w, and we say that this edge is
incident to v (and w). This edge4 will usually be denoted vw.

The degree of a node, or vertex, v in r is the number of edges in r incident to v. If
all nodes in r have the same degree, we say that r is regular.

A path of length n from z to y is a sequence of vertices 0=(v0, . v.. v} in r, so v0 -=,
v.=y, and so for each i, v,v,+ is an edge of r. Clearly, this is the same as a sequence of
wires connecting the processors corresponding to z and y. (It might be that v, and v,.2
are the same, corresponding to a path which doubles back. We do not consider the case
where v, and t ,, are the same; that is, we don't admit the case of an edge connecting a
vertex to itself.)

The distance between distinct nodes v and tv is the minimum length of paths
between them. (The distance from v to itself is taken to be zero.) We denote this dis-
tance by d(z,y). By the diameter of the array, we mean

a(r) = max d(z,y).

where the max is taken over all pairs of vertices in r.

We now want to define a restricted type of graph which is of interest partly because
it possesses a high degree of regularity. First, however, we give the definition of a type
of algebraic construction known as a group.

Let G be a set of points, or elements, and let x be an operation which takes or-
dered pairs of elements (a, b) to a third element, denoted ax b or simply ab. We say that
there is a distinguished element known as the identity element, denoted by e, provided
eX a = axe = a, for all a in G. We say that a has an inverse, denoted by a-', provided
a-'Xa = aXa -' = e. We say that x is associative provided ax(bxc) = (axb)xc, for all
a, b, and c in 6.

A group is a set G and an operation x such that x is associative and every element
of G has an inverse.

Some of the simplest examples of groups are the cyclic' groups, denoted Z/n, which
are the integers (0, n-1) with the operation being addition modulo n.

Definition 2.3.1: A Cayley graph is a graph constructed as follows: Let the point set
of the graph G be some finite group, also denoted by G. Let n be some set of elements of
G where any element in G can be written as the product of elements of fl (that is, fl gen-
erates G), and f-l_= n. Then every element g in G is connected to all elements of the
form wg, where w is in 0, and only those elements. We denote the Cayley graph associ-
ated with the pair (G,fO) by r(G,fO). It is easy to see that such a graph is of a type known
as vertex transitive (defined below), and it is obvious that the degree is the number of

4 It seems worth remarking here that one could make all these deinitions with ordered pairs of vertices, giving rise to what is
known as a directed graph. In networks where the low of information is non-symmetric, such a formulation would seem called for

* The operation in these groups is known as "clock arithmetic" to those upon whom "the NEW math" was inflicted.

S

elements in fl. (Biggs [31 provides extensive information about such graphs.)

This class of graphs is very large (it is of course infinite, but it is also large in a
more meaningful sense) in that it contains a number of examples of interesting architec-
tures, and many more can be obtained by simple constructions using these arrays. As
one example, we show in Chapter 4 how to construct a class of networks known as the
Cube-Connected Cycles in the manner described above.

Definition 2.3.2: The concept of the symmetry of a graph is precise. Let r be a graph
with nodes labeled {1,...,n}. Then, a permutation r of the integers {1,...,n} is called an
automorphism of r if and only if, for all i and j, Ii) is connected, or adjacent, to jj) if,
and only if, i is connected to j. Thus, as far as r is concerned, i and ($ "look" exactly
the same if r is an automorphism. We say that r is node, or vertez, transitive, provided
for all nodes i and j there is an automorphism r sending i to j.

2.4 Sorting

We now relate the idea of data dependence for an algorithm to communication con-
straints of a network by considering methods for sorting which conform to the commun-
ication restrictions imposed by our graph. In general, a sort may be thought of as a per-
mutation p, where the contents of the i-th node are sent, ultimately, to the p(s-th node.
(Here we rather naturally suppose the it was desired to get the contents of the i-th node
to the p(i)-th node. If we imagine the initial contents of the i-th node to be p(i), then our
sorting algorithm is in effect computing the inverse of p.) Of course the particular per-
m'--tion "chosen by the algorithm" will depend on the initial contents of various
nodes, i.e., the initial state of the array. We shall say that a sorting algorithm is con-
sistent with a graph r provided it generates a sequence of permutations pi, where for
each j,

=h " p,)OW, (2.1)

and for each k and j, pAJ) is connected to j. (That is, the permutation p is performed in k
steps, and at the i-th step the contents of the ,-th node are sent to some node p,(J) which
is connected to j.) We shall consider here only consistent algorithms where each of the pk

may be taken to be a transposition or the identity.

We say that the time complezity of a sequence of permutations, as in Equation 2.1,
is the minimum number of terms into which p can be decomposed, where the terms are
of the form p,. • • p,+, and the various p, in a given term commute. (We call such a term
a time-step. Since permutations commute if, and only if, they act on disjoint sets, a
time-step is some collection of permutations which can be performed concurrently.) Fi-
nally, the time complexity of an algorithm is the maximum time complexity of the per-
mutations p generated by the algorithm, where this maximum is taken over all initial
states of the array.

7

One fact which is completely obvious is that, by this definition, the time complexity
of any consistent algorithm is at least as great as the diameter of the underlying graph,
since each time-step moves the value at the i-th node over at most one edge in the
graph. Consequently, the sorting problem for a systolic array6 with N elements is of time
complexity at least O(/M. However, the best7 results of which we are aware sort in O(N)
and in particular this can be realized for a wide class of arrays.

However, it is not enough to make the diameter small, as consideration of a 2-tree
quickly shows. The difficulty here is that of congestion, i.e., many shortest paths pass
through the same node; every path from the left half of the tree to the right half of the
tree must pass through the root, and so the complexity must be at least 0(N) for an N
element tree.

There are, of course, many other considerations in assessing the costs of various
algorithms/arrays for sorting. It seems very desirable for the algorithm, and hence the
array, to have a sufficiently simple regular structure so a theoretical verification of the
algorithm would be feasible. Also, it seems discordant to the spirit of distributed pro-
cessing to have the permutations pt to have general dependence on the current state,

especially when they are as simple as transpositions. In this last case, it seems most na-
tural to require that pk depends only on the states of some pair of nodes i, and j,, and
that the particular nodes depend only on the stage k. With these restrictions, the best
sorting algorithms known require' 0(log2 (N)). Connections between sorting and graph
theoretic problems will be discussed further in Chapter 4.

2.5 Matrix Tridiagonalization

This section contains definitions for concepts needed in Chapter 3. More detailed
information on these topics may be found in the excellent book by Parlett, Reference
[4].

Definition 2.6.1: Let A = (a) be an nx n real symmetric matrix. We say that A is ti-
diagonal if, and only if, a, - 0 for Ii-j] > 1. Let R40) denote the plane rotation

cos0 -sin
sin0 cosO j

Then, notice that R2(d)-l - R2 0) " R2(0 - R2(6)°. In n-space let R.(ij,0) denote the ro-
tation which is the identity on the orthogonal complement of the plane given by the i, j
basis vectors, and is R2(0) in this plane. Finally, for ik 7 j, let G(ijk) denote a transfor-
mation

A - R(i.j,O)AR(ij,-0) = A',

6 See reference II for a definition of systolic array

7 See Knuth 2!, Section 5 3 4
SAgaia, see [21

am

such that A',k o O. It is easy to see that G(ij,k) is unique up to the sign of 9 if i, j, k are

distinct, and if k = i then G(i,j,k) is given by 0 in { ,-0, j-4, 0-1), for a unique 0.

This transformation is referred to as a Givens rotation. For A Hermitian, Gij,k) is
defined in a completely analogous fashion, and there are similar types of simple ambigui-
ties in its definition exist, although 0 may now be complex. See Reference [4], especially
Chapter 6, Section 4, for a more detailed exposition.

2.6 References

[1]. Mead, C., and Conway, L., Introduction to VLSI Systems, Addison-Wesley,
Reading, MA, 1980.

(2]. Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and Search-
ing, Addison-Wesley, 1973.

13]. Biggs, N. L., Algebraic Graph Theory, Cambridge University Press, 1974.

[4]. Parlett, B., The Symmetric Eigenvalue Problem, Prentice-Hall, 1980.

r9

iI

rS

3. Matrix Tridiagonalization

3.1 Introduction

The increasing availability of VLSI (Very Large Scale Integration) devices and spe-
cialized computer architectures has led to a surge of interest in algorithms which utilize
parallel processing. A large number of these algorithms has been directed towards solv-
ing classical problems in linear algebra with notable successes in solving linear equations
and performing matrix operations (References [1]-[3]). However, the computation of the
eigenvalues and eigenvectors of symmetric (ilermitian) matrices remains an area in
which results have been somewhat less effective than one might hope. The standard ap-
proach, which also lends itself to parallel architectures, is tridiagonalization followed by
the QR algorithm ([4]-[7]). The major stumbling block in a fast implementation of such
procedures is the tridiagonalization, which, under current methods, requires a time of
O(.V:) to reduce an NxN matrix, in sharp contrast to O(IogN)\ for each iteration of the
QR algorithm ([5]-[7]).

Thus, it is of interest to establish bounds on the ability of parallel processing to
speed the reduction of a matrix to tridiagonal form. Unfortunately, the analysis given
here is of a very restricted nature, as it assumes that the algorithm doesn't make non-
zero any entries which have been previously set to zero. However, while this requirement
may seem absurd, many of the proposed methods which were circulating informally at
the time this work was being done satisfied this condition. Therefore, while this analysis
offers little for the general case, it at least explains why those proposed methods had
such poor performance, and why the current systolic methods which work in 0(Lft) time
are of such different character. (See Reference [8].)

3.2 Problem Statement

Let .4 denote an N-dimensional symmetric (Hermitian) matrix. A Givens rotation
G(i,i.,j) is the essentially unique rotation in the plane of the i, and i2 coordinate axes
which results in .4,, = 0 ([4]). Note that such a transformation is represented by an
orthogonal (unitary) matrix R where A-A' - RAR - 1. The effects of a Givens rotation in
creating or destroying matrix zeros may be characterized as follows (see Figure 3.1):

a. Only rows i, and and columns i, and k are effected.

9 O(N) for .ystolic array,

10

b. A zero is produced at element A., and symmetrically at A,,.

c. For any k 3 i,,i, if A,1 - AV - 0 prior to rotation, then they remain zero after
rotation. (By symmetry this also holds for A, - 0).

Thus, with the exception of cases b and c, all elements of rows and columns il and 2 in
the resulting matrix will be generically non-zero.

The matrix A The matrix A'
* 00 0
" X 0 Xx x' A' A

o X XX X X 0 0 X X X x
X X X -X

o X X X X X 0 X X X X X

Figure 3.1 The Givens rotation 0(s,4,2). Elements represented by dots are unaffected; those i
represented by M are changed, and the os behave as shown.

Next consider the problem of reducing a symmetric matrix A to tridiagonal form us-
ing Givens rotations. We also wish to make use of parallel processing, so we allow
several rotations to be performed simultaneously, provided they involve disjoint sets'0 of
rows. In that case, the corresponding matrices R (equivalently the angles of rotation) will
be independent of each other, and no element of A will be affected by more than two
Givens rotations. It then follows that with sufficiently many processors such a set of ro-
tations may be performed in 0(1) time. Our principal result is the following theorem:

Theorem 1: Suppose we are given an algorithm for tridiagonalizing an NxN sym-
metric (Hermitian) matrix by, possibly concurrent, Givens rotations as described above.
If the algorithm never replaces a generic zero by a generic non-zero, then it requires at
least O(N logN) time steps. Furthermore, this lower bound is realizable.

The proof of Theorem I will be divided between the next two sections.

3.3 An O(N log N) Algorithm

In the interest of simplicity, in Sections 3.3 and 3.4, our discussion is restricted to a
description of the elements below the diagonal. Since the matrix is symmetric (Hermi-
tian), there is essentially no loss of generality. The stipulated algorithm proceeds by
zeroing one column at a time starting with j - i and following with j - 2, etc. It is clear
from property (c) that if all sub-tridiagonal elements A, are zero for k <j, they will
remain zero under Givens rotations of the form G(il,,) where i, 2, -j+1.

20 More formally, a Collection of rotations (,,j, ,i,k).... i, permitted to be performed in parallel provided the sets
{,), {+,ig},... are disjoint. I

t

We next show that column j may be zeroed in log(N-j--1) steps. By pairing rows j+1
through N we may simultaneously zero half the sub-tridiagonal elements of column j
(rows j+2 to N). We then repeat the process for the remaining half of the rows, which
still have non-zero elements in column j. Continuing in this fashion, we find that all ele-
ments of column j (i.e., AV for i > j+2) have been reduced in q steps where

1 + 1
2 4 2q

or

_ _ _ 1
N1 j 1 - 2

Thus, it is sufficient that

q _ 10g2(N-j-ij . (3.1)

Finally, summing over j and noting that q must be an integer we find that our algorithm
takes

N-2
(Iog(N-j- 1)+1)=og 2 (N-2)!+N-1 (3.2)

steps which, by Stirling's formula, is O(N Iog2N). This proves existence.
We remark that such an algorithm requires communication across the entire matrix.

If we restrict ourselves to "local" connections as in systolic arrays, it is not generally
possible to achieve the same speed. Pipelining still enables us to perform Givens rota-
tions in 0(1) time (References [31 and [6]). However, it is not difficult to see that if only
adjacent matrix elements may communicate (i.e., only rotations of the form Gci,ii1,ij)
are allowed), there is essentially only one algorithm for reducing a column. It must start
at the bottom, G(N-1,Nj), and proceed up, ending at G(j+1,j+2,J). We then find using
Lemma 1 of Section 3.4, that for algorithms with "local communication" the best that
can be done is o(N2) time steps. (This statement should not be taken too rigorously since
we have not really defined the term "local".)

a. b.

x X
X X X X

0 X X 0 X X
0 0 X X X 0 X X
0 0 0 X X 0 0 0 X X
0 0 0 0 X X 0 0 0 0 X X

The final state of matrix A. A hypothesized previous state.
Figure 3.2

12

I

3.4 Derivation of a Lower Bound

To complete the proof of Theorem 1, we establish the following lemma:

Lemma 1: An algorithm of the above type (tridiagonalization by Givens rotations)
must proceed by the successive annihilation of columns. More precisely, if the algorithm
is to take a minimal number of time steps, and not make generic zeros non-zero, column
j must be placed in tridiagonal form prior to column j+l.

Of course, one can zero elements in column I > j prior to j, but this lemma states
that one will eventually have to make non-zero some element of column I.

We first note that, given any algorithm which employs parallel Givens rotations, we
may assume the existence of an equivalent algorithm with Givens rotations in sequence.
(Simply order the concurrent rotations performed at each step in an arbitrary manner.)
The proof, then, is obtained by induction, starting from the tridiagonalized matrix and
working backwards. To motivate this method let us consider the tridiagonal matrix pic-
tured in Figure 3.2a. The final zero placed by the algorithm could only be element A6A.
The creation of any other zero would also have created a non-zero element. For exam-
ple, zeroing element A,., of Figure 3.2b by a Givens rotation with row 5, G(5,4,1), creates
a non-zero element at A6,,. Alternatively, the use of row 3 destroys (by its action on
column 3) A,,,. Similarly, the use of row 2 destroys A,., and A5,2, and row I would destroy
AU., and A6,,. In other words, we conclude that the last stage of the algorithm must have
consisted of the single Givens rotation G(4,5,3) using row 4 to zero the element A6,4 . We
now proceed to the general proof.

Pf. of Lemma 1: Suppose that at some stage o of the algorithm we have the following
situation below the diagonal (where j _ N-2): columns I to j have their final tridiagonal
structure; column j+1 has at least one "generic" zero; and columns greater than j+1 are
arbitrary. (This situation is pictured in Figure 3.3 for j = 2 and N = 8.) Then the previ-
ous stage #-I could not have had a non-zero off-tridiagonal element in column j, say All
with I > j+2, because zeroing that element by a Givens rotation would have involved ei-
ther

a. The interaction of row I with another row r > j+2 which would create a non-zero
entry at A,, destroying the tridiagonal structure for columns i to j;

or

b. The interaction of row I with a different row r < j+2, which implies the interac-
tion of column I with column r. This interaction would create a non-zero entry at A,
and either destroy the tridiagonal structure (if r < j+1) or remove a zero from
column j+I (if r - j+1).

These aspects are illustrated in Figure 3.3 for 1- 6. It now follows by induction
on j for j - n-ln-2,. . . ,1 that column j-i must have been completely reduced pri-
or to initiating the final reduction of column j. Thus, an algorithm of the type
specified must proceed column by column; the reduction of any matrix elements

13

outside such a sequence results in creation of new generic iion-zeros.

To complete the proof of Theorem 1, we note that in reducing column j we
may only use rows j+1 through N (otherwise we introduce non-zeros in the column
through mechanism (b)). Similarly, we may not use a row r with a zero in the jtb

column to reduce some other row since the zero A., will be destroyed. Finally, the
condition that concurrent Givens rotations be performed on disjoint pairs of rows
implies that at most one-half the non-zero entries may be reduced in one stage of
the algorithm. This restricts us to the situation of Equation (3.1); i.e., O(log(N-j-1))

steps are necessary to reduce column j. Equation (3.2) then implies that the entire
tridiagonalization takes at least O(N logN) time steps.

a. b.
X X
X X X X

0 X X 0 X X
0 0 X X 0 0 X X
o o 0 X X 0 0 0 X X
0 0 0 X X X 0 X 0 X X X
0 0 X X X X X 0 0 X X X X X
0 0 0 X X X X X 0 0 0 X X X X X

A possible state of the matrix at stage a of A hypothetical situation one Givens rotation
the algorithm. This corresponds to the case short of stage s, assuming stage e created a
j=2 of the text. zero at A,,. This is impossible as: (1) the in-

teraction of row 6 with any row >j+2 creates
a new X in column 2, and (11) the interaction
of row 6 with row r<j+2 implies interaction
with column 6 with column r which yields a
new X in column r.

Figure 3.3

3.5 Remarks

By restricting our arguments to elements below the diagonal, we have implicitly as-
sumed that i2 > j in G i,,44. If this restriction is relaxed, we find that the last Givens

rotation may have zeroed either Am (result by symmetry of applying G-,1,3)) or AN.N-2.
As a consequence, the reduction may actually proceed by simultaneously reducing rows
(bottom to top) and columns (left to right). The number of time steps still remains
O(N logN), however.

The astute reader may also have noted that our arguments assume the elements of
the two subdiagonals are generically non-zero and justifiably wonder whether some ap-
propriate zeroing of these elements, or others, at intermediate stages could have a posi-
tive effect on the algorithm. That this is so has been shown in Reference 181, by R.
Schreiber.

14

3.6 References

[1]. Mead, C. and Conway, L., Introduction to VLSI Systems, Addison Wesley,
Reading MA, 1980; especially Chapter 8.

[2]. Kung, H. T. and Leiserson, Charles E., Systolic Arrays (for VLSI), Sparse Ma-
trix Proceedings, SAM, pp. 256-282, 1978.

[3]. Heller, D., 'A Survey of Parallel Algorithms in Numerical Linear Algebra,'
SIAM Review, 20, 4 Oct 1978, pp. 740-777.

[4]. Parlett, B., The Symmetric Eigenvalue Problem, Prentice-Hall, 1080.

[5]. Sameh, A., and Kuck, D., 'A Parallel QR Algorithm for Symmetric Tridiagonal
Matrices,' IEEE Trans. on Computers, C-26, 2 Feb 1977, pp. 147-153.

[6]. Schreiber, R., 'Systolic Arrays for Eigenvalue Computation,' SPIE Technical
Symposium East, SPIE Vol 341, May 1982. i
[]. Heller, D., and Ipsen, I., 'Systolic Networks for Orthogonal Decompositions
with Applications,' Computer Science Dept., CS-81-18, Penn State Univ., Aug
1981.

[8]. Schreiber, R., 'Computing Generalized Inverses and Eigenvalues of Symmetric
Matrices using Systolic Arrays', Comp. Sc. Tech. Rep., Numerical Analysis Project,
#NA-83-03, Nov 1983, Stanford Univ., Stanford CA.

i

- 16

4. Regular and Cayley Graphs

4.1 Introduction
It is clear that communication time between processors is one of the most severe

limiting factors in designing high speed parallel computers. Under these circumstances,
it is obviously important to be able to design networks of processors in which communi-
cation time is as short as possible. A mathematical version of this design problem is the
problem of constructing graphs of given fixed degree and number of vertices with small
diameter. (See Chapter 2 for definitions of these terms.) We have attacked this problem
from two directions. First, we have constructed a heuristic algorithm which finds graphs I
with small diameter, and implemented it on a computer. The program is written in the
C-language. We have compared the results with previous best known results. Secondly,
we have studied a collection of graphs which have compact and systematic descriptions,
the so-called Cayley graphs. Routing algorithms for these graphs is easy to specify. We
have given a crude comparison of their diameter with that of a theoretical bound, and
studied a specific class of them, the "modified cube-connected cycles."

4.2 Summary of Results

The results obtained may be summarized as follows.

a. The heuristic algorithm we constructed is an improvement over all previous algo-
rithms of its kind. In particular, we improved many of the best known values for
dense graphs of given degree and diameter. A complete description is given in Sec-
tion 4.2.2, where Figure 4.1 shows all the improved values we obtained.

b. Our algorithm does not find the densest known graphs in cases where they are
constructed using systematic combinatorial constructions. This suggests that one
should study a restricted class of graphs that has systematic descriptions.

e. The symmetric groups S. admit graph structures whose diameters approach the
theoretical bound (Moore bound) arbitrarily well as n-oo. This suggests that they
should be studied much more carefully as a possible source of efficient communica-
tions networks.

16

d. A slight modification of the cube-connected cycles of Reference [I] produces an
infinite family of graphs whose diameter grows as 21og 2(K), where K is the number of
points in the graph. This compares favorably with 5/21og4K), which is the diameter
of the cube-connected cycles.

e. A layout is given for these modified cube-connected cycles, whose area is 3/2
times the area of the cube-connected cycles with the same number of nodes. The
VLSI measure of complexity, A4, is thus slightly decreased by a factor of 24/25.

These results are substantiated by running the heuristic program which we have
designed, and by theoretical analysis contained in Section 4.2.

4.3 Detailed Description of Results

4.3.1 Measures of Communication Time.

Throughout, we are interested in arrays of "processors" connected by "wires." The
nature of these processors is not specified, because we want to study the general prob-
lem of communication time, without restricting to a specific situation. We formalize this
notion by considering graphs r, where the vertices of the graphs correspond to proces-
sors and edges to wires. We will suppose that the array functions in such a way at every
time information is allowed to flow along one wire. The time required to move along one
wire is presumed to be constant. By the distance between two processors, or the
corresponding vertices z and y, we mean the length of the shortest path in r from z to y.
(These and other standard terms from graph theory are defined in Chapter 2.) From this
point on, we no longer speak of the arrays of processors but only of their corresponding
graphs. We wish to study the problem of designing graphs with a given number of ver-
tices, having small diameter. Of course, with no constraints on the graph, this is a trivi-
al problem since complete graphs all have diameter 1. However, technology dictates that
the number of edges from each vertex should be less than or equal to some finite
number d. Accordingly, we consider only regular graphs, and we attempt to solve the
problem of minimizing the diameter of regular graphs of degree d having, say, N ver-
tices. There is an a priori upper bound to N, given 4, called the Moore bound. (see
Reference [2]), which is

N<I+d+4d-1)+ + 4d-l -1

where k is the diameter of the graph. This says that asymptotically, k grows at least as
fast as

Iog&-, (N) - N
d(d-1)

It is known, however, that this bound is only sharp in a finite number of cases for d > 3
(for 4=2, the cyclic graphs are all examples where it is sharp), and it seems generally to
be rather crude. Our efforts toward studying this problem consist of the construction of
a heuristic algorithm (see Section 4.2.2), and some specific constructions derived from

17

group theory (see Section 4.2.4).

The diameter itself is only a weak measure of the effectiveness of the processor ar-
ray. Suppose, for instance, that the processors have no memory, and that one wishes to
transfer information simultaneously from the vertex v, to the vertex w,, for i=1, . . . k.
Since there is no memory, one must produce a collection of paths 0(') of length n in r,
with vV # vW for all 1ij<k, and so that t4)_v,, 4.)=w,. Here, (={4) .. ,S)). Such a
collection of paths is called a k-separated multipath in r from (v V vJ to (w, . . .

We define the -separated distance between (vl, . . .,vJ and (wl, . . . w,) to be the
minimum length of all k-separated multipaths from (v,, . . . vk) to (w, . .. wk) in r, and
denote it by

Q v(.. .. Jk,(w1, wj).

The k,-separated diameter is

max dk ((', • • • k),(w,, ,tv)) = A r)

where the max is taken over all pairs of k-tuples, with v, & w, unless i j.

The -separated diameter Adr) takes congestion into account, and so is a more sen-
sitive measure of effectiveness of the processor array. However, it assumes that the pro-
cessors have no memory. We will define another measure of efficiency A(r,q, which as-
sumes that each processor has I units of memory. (Notice that this is not equivalent to
having memory, but is simply a measure which attempts to take into account some pos-
sible improvements in algorithms which would be made possible by having memory.) By
a (kj-separated multipath of length from (vi, . A.). v to (w, . w.k. w), we mean a k-tuple 00)
of paths of length n, so that

a. o(') is a path from v, to w,,

and

b. Each of the k-tuples (V,(1),. ak) contains each vertex at most I times.

Note that

and that for I > k, Adr,) - a(r). Intuitively, agr,) measures the time required to
transfer the information in any k-tuple of processors to any other L-tuple of proces-
sors, given that each processor has I units of memory.

We now observe that for any graph r, Ar,t) is just the diameter of a graph as-
sociated with r. For, form the k-fold product graph

rx ... xr.

In rx ... xr, consider the full subgraph r, on the set VC Vx ... xV, (here V
denotes the vertex set of r), where

16

k= ,. . . ,vk)lno v, appears more than I times).

Then it is easy to see that

Thus, we have reduced these more sophisticated measures of effectiveness to a di-
ameter question; this will be a useful reduction in view of the algorithm to be con-
sidered in the next section.

Unfortunately the diameter is often rather expensive to compute. Consequent-
ly, one would like to obtain some less sensitive, more easily computable invariants
of graphs which still have some relation to the diameter.

Definitions: A cycle is a path from some given node to itself. The girth of a graph r
is the length of the shortest cycle of r which contains no repeated edges.

We note that if a graph has diameter k, then its girth, is at most, 2k+1. Intuitively,
the girth is inversely related to the diameter. For a fixed number of points, small diame-
ter tends to imply large girth. Let us summarize the facts known about girth relating to
this problem.

a. There is a lower bound for the number of points in a graph with a given girth,
analogous to the Moore bound (see Reference [31).

b. For a graph of odd girth g-2k+l, and degree d, the number of points is at least
l+d+d(d-l)+ ...- +d(d-lI)" - .

This bound is obtained only for d = 2, or for d = 3,7, and possibly 57, with 0 = 5.

e. For a graph of even girth p " 2k and degree d, the lower bound is

I + d+ D(d- l) + . + d(d-)k-2+ (d- I).

This bound is known to be attainable only for " - 4, 6, 8, or 12. Also, only d- p+I
are known to occur, where p is a prime. In each case the diameter is k. These graphs
provide by far the optimal graphs for the diameter problem with given diameter and de-
gree.

We define certain numbers related to the girth. Given a vertex Zr', we define NAZ)
to be the number of vertices connected to z by a path of length k, and define v,r) to be

min Nk (z).

Note that if r is a regular graph of degree d, then v,1() is bounded above by
l+d+4d-i)+ .. -+4d-t)-'mpAd), and that the girth of r is _>t if ,(r)-#d) for all k < 1/2.

Consequently, to maximize girth, one should attempt to maximize successively
... ,,r.In each case, vP.+1(r) should be maximized subject to the constraint

10

that one remains at an optimum for the previous values of the subscript. V, is quickly
computed for small values of k, and the vks are another more computable collection of
invariants of graphs, which are related to the efficiency of the associated array of proces-
sors. This is particularly useful in attempting to work with the measures Arj,; since
the graphs rl are usually quite large, the time spent computing invariants is of primary
importance.

4.3.2 A Heuristic Algorithm.

A "hill-climbing" algorithm is produced here, using a particular heuristic criterion
to find graphs of a given fixed degree and number of points with small diameter.

Let r be a graph of degree d, and let v1,v2,w1,w2 be vertices of r so that vU% and M%
are edges of r. Then by the perturbed graph based on (vj,v 2,wI,ut), we mean the graph f"
whose vertices are the same as those of r, and whose edge set is

(Er-{v, wiw=})U{.{vw,, t }). Here Er is the edge set of r. We say also that I' is the result
of a perturbation on r. These modifications are precisely the X-changes defined in Refer-
ence 14]. T' is regular of degree d if r is. We will view these perturbations as "small"

change in the graph, and move in directions which improve a certain functional which
we define below. Graphs will be encoded by their "incidence matrices." We number the
vertices of the graph F, by (v,, .. . vi). By the incidence matrix lW) we mean the matrix
(aJ), where a,j = 1 if v,v, is an edge of r or i--j, and a, = 0 otherwise. One useful proper-
ty of 1F) is:

The (i,j)-th entry of lF)l is the number of paths of length <_ k from v, to v, in F.

Consequently, the diameter of r is the least value of k for which all the entries of
/r) k are non-zero. This criterion is used in the algorithm to compute the diameter, since
matrix powers are readily computable by a machine.

The diameter alone is itself not a sufficiently sensitive invariant for purposes of the
algorithm. Specifically, there are too many graphs for which no perturbation results in
an improvement of the diameter. Consequently, using only the diameter as a functional
to be optimized, the algorithm is frequently unable to find a graph with even reasonable
diameter. A definition is needed to improve matters. Let Z denote the integers. We
wish to define an ordering on ', called the lexicographic ordering. For n=1, the lexico-

graphic ordering on Z"=Z is just the usual ordering on the integers. For n>1, we suppose
the ordering is already defined for all m<n. We write Z"=Zx Z"- , and define the ordering
inductively by

{ z < :1 or }
(Z,w) < (VU) iffiz-.. z and W <

for zeZtZ"'-. Now, we associate to every graph its "diameter vector." First, for a posi-
tive integer 1, we define a@4') to be the number of zeros in the Ith power of (r). Of course,
if i>&(i'), @a)-0. The diameter vector is now simply the vector

20

(a(r) (k), a, (, , _- (r... , a2 (r)).

We will denote this by Vir). We order these vectors as follows:
a,-,. _ (r) ,(r)) <5 (A(r%) aei (r), a. . 2 (r))

if, and only if,

S (r) '(r) < a(r') or
a(f)f A(=r) and a(r) < a(r'))

Here, a(r) denotes the vector (a*1 r). a)), and the ordering is the lexicographic
one.

The algorithm now proceeds as follows. A 4-tuple (v,t,2,w,,") is r admissible if v1 V

and wzw2 are edges of r, and v1w and v2w2 are not. To a r-admissible 4-tuple, we may as-
sociate a perturbation of r, as defined above. From a fixed initial graph r, r-admissible i
4-tuples are generated, and the associated perturbations are applied. This continues for
a large number of steps, until the initial graph is presumed randomized. The 4-tuples
are generated using a random number generator. The fixed initial graph (in the trivalent
case) is an n-cycle with antipodal points connected. After this is done, the steps are as
follows:

a. Select an r-admissible 4-tuple at random

b. Compute 1i'), where f is the graph obtained by applying the perturbation asso-
ciated to the 4-tuple constructed in (a). If VI?')< viF), set r = P. Repeat step (a).

The perturbations are selected at random, since it was found that a simple ord-

ering of perturbations tended to bias the algorithm toward particular graphs.

We compare our algorithm to that devised in Reference [4]. Our perturbations
are precisely their X-changes, but the functional we optimize is much more sensi-
tive. Theirs consists only of A(r) and of ak_(r).

Summarizing the results of the application of our algorithm, by the use of the
algorithm, it has been possible to improve substantially most of the densest known

* .graphs. We give our improved version of the table constructed in Reference [5]. d
denotes the degree of the graph, k the diameter. The (dk) entry is the largest known

Lgraph with diameter k and degree d. Our entry is listed above; the parenthesized
value below is the value from Reference [5]. One asterisk indicates that the graph is
provably optimal. Two asterisks indicates that it is obtained from Reference [3] us-
ing the result cited in Section 4.1.

The results obtained from this algorithm are in some cases surprising. Some of
the qualitative properties we observed are:

21

a. Many graphs obtained by random generation of graphs improved values in the
older version of the table in Reference [5] given by Storwick [6]. This suggests that
one is further from optima than was previously thought.

b. By evaluating the eigenvalues of the incidence matrices arrived at by the algo-
rithm, it was found that there are many distinct "local minima" (i.e., graphs for
which no perturbation improves the diameter vector) for the diameter vector. This
contradicts the suggestion made in Reference [4], that one tends to arrive at a glo-
bal optimum from all starting points. It seems that the algorithm in Reference [4]
suffers from two deficiencies. First, their objective functional for minimization is not
sufficiently sensitive, as we observed above. Second, their perturbations are done in
fixed sequential order, which severely skews their results. We have overcome this V

difficulty by randomly selecting the perturbations at each stage.

c. Although our algorithm is efficient, it seems that substantially larger networks
could be studied if our diameter routine were modified to use the so-called "Dijks-
tra algorithm," which would speed up the diameter calculation substantially.

d. Although the algorithm is an improvement over all previous heuristic algorithms
for this problem, it is unable to find many known dense graphs, arising from sys-
tematic constructions. The reason for this seems to be the "denseness" of the set of
local optima in the set of all graphs of degree d, and the relative sparseness of the
so-called vertex transitive graphs therein. It seems, therefore, that it would be desir-
able to design an algorithm which operates entirely inside a collection of vertex
transitive graphs, possibly with the Cayley graphs (see Section 4.2.4). Using the
Dijkstra diameter algorithm and an efficient description of many groups, such an al-
gorithm should be constructible. Moreover, it would allow much larger networks to
be studied, since the diameter calculation for vertex transitive graphs is substantial-
ly shorter than that for arbitrary graphs.

22

Et

d\k 2 3 4 5 6 7 8 9 10

3 10* 20* 38 58 126" 160 240 400 600
1101 120] 1341 1561 1s41 11221 11761 13111 16251

4 15 36 80 150 728* 728* 910 2520 2888
1151 1351 1671 11341 12611 14251 [9101 113601 123121

5 24 56 170" 300 2730* 2730 2730" 5760 9648
1241 1481 1121 11260 1 2450] 146901 193801

6 31 80 312"* 600 7812"* 7812* 7812" 19683 59049

1311 1651 11641 16001 111521 125201 165611 19831 1590491
7 50* 100 312"* 992 7812"* 7812 12960 43200 90000

1501 [81 12521 [9921 128501 14680] [122501 1432001 1864001

8 57 140 800* 2550 39216* 39216** 65536 262144 1048576

1571 (1051 (3841 125501 (57601 (163841 [655361 (2621441 110485761

9 74 160 1170* 3306 74898* 74898** 76500 382500 1048576

[741 11501 16001 133061 1125001 1201601 (765001 13825001 (10485761

10 91 250 1640 5W550 132860** 132860** 390625 1953125 9765625
__ [91J [2001 18641 [5550 , 125 [781251 1390625 j1953125 197856251

(degree = d, diameter = k)
Figure 4.1. Densest known regular graphs, June 1983.

4.3.3 Modification of the Algorithm for More Sensitive Measures.

In view of the remarks in Section 4.1 which identify the measures A r) as the diam-
eter of an associated graph rl,, one can study these measures in principle using the algo-
rithm discussed in Section 4.3.2. However, the graphs r, are usually too large for this
procedure to be practicable. Our current implementation of the algorithm will accept
only graphs with fewer than 1000 points, and I' usually is larger than this. For the
measures A, we, therefore, propose the use of a "dual algorithm" based on girth, which
is much simpler to compute. (See Section 4.3.1.)

The modified girth algorithm is identical to the previous algorithm except that the
objective functional is altered. For a graph r, we define its girth vector to be

-y(F)fri(),vAI),.. . .

This is ordered by the lexicographic ordering, and the algorithm proceeds just as before,
except that we now accept a perturbation if it increases -1(r). Applying this algorithm to
rFk should produce heuristic results which improve these measures.

4.3.4 Vertex-Transitive Graphs.

23

Two desirable features of a graph to be used as a processor array are that the
description be as simple and as compact as possible. Thus, the graphs produced by a
heuristic algorithm generally will not be satisfactory from this point of view. For this
purpose it would be useful to restrict oneself to a class of graphs having a compact
description.

One such family is the collection of so-called Cayley graphs. (See Chapter 2 for
definitions and notation.) As an example, if =Z,, the cyclic group with n elements, and
fi= IT,-}'), where T is a generator of G, the associated graph is the cyclic graph of size n.

A useful property of r(G,n) is that its automorphism group is transitive on the vertices.
This is clearly the case since the right G-action on G provides an action of G on the
graph, which is clearly transitive on the vertex set. This is a useful property, since it
means that the diameter may be computed by finding the points of maximal distance
from one given point. Also, routing algorithms for these networks are compactly
described, since one must only find optimal paths starting at one given point.

One important proposed architecture, the cube-connected cycles of Reference j1], is
of this form. In fact, if G is the semi-direct product Z/nx(Z2), where if T is a generator

p

for Z/n, p(T)(1. z,) - (zf,zl,... ,z,, 1). Thus, G has elements (m,v), where mZ/n,
vcEZ/2)", and (m,t,)(mt} = (m+m',p(m')v+t/). It is an easy calculation to see that if fn -
{(1,0), (-1,0), (0,e)}, where e, = (1, 0, 0 ,..., 0), then r(a,nl) is, in fact, isomorphic to
the graph associated with the cube-connected cycles. The diameter of the cube-

connected cycles is known to grow as 1IogAK), where K is the number of vertices in the

graph.

We should remark here that large girth (and hence small diameter) in Cayley
graphs is associated with non-commutativity of the group in question. This being the
case, the simple groups seem to be natural candidates to produce efficient graphs. This
is proven in studying the diameters of r (G,fl) for certain choices of fl, and G-S., and
observing that for large n, they approximate the Moore bound. The order of symmetric
group S, is n!. Let flkcs, be the set of all cycles of length <k. We propose to compare
the diameter of r(S,,flj with its associated Moore bound. First, we observe that

+11 + + (k- 1)!1J

by a simple counting argument. Thus, the degree of r(Slnj is

k

Thus, for large n, the Moore bound for r(snj is

logd- 2 (n!) - In(-)

24

By Stirling's formula,

lir n n!.)
tai - 1A n

so for large n, the Moore bound is approximated by
nilnn

In (d - 1)

But, again for large n,

In (d- 1) -In (-n + J-)

is approximated by Inl J k Inn. Hence, for large n, the Moore bound for r(s.,nk) is ap-

proximated by n/k. The diameter of r(s,nfk), on the other hand, tends to n/k-1, as one
readily computes in S.. Consequently, the diameter of r(s.,nj is within a factor of

k I
k-I k-I

of the Moore bound. As k becomes larger, we are able to approximate close equality ar-
bitrarily. So it seems that S. is a plausible candidate for further study.

We now show how to modify the cube-connected cycles, using group theoretic
methods, to provide an infinite family of vertex transitive trivalent graphs, whose diam-
eter is substantially smaller, but which has all the desirable regularity properties of the
cube-connected cycles.

Let G.=Z/nx(Z2)", as before. Note that G, contains a central element, namely the
p

vect Jr (0,(1, 1, ... , 1)). Following our intuition concerning the relationship between non-
commutativity and small diameter, we eliminate the central element by simply factoring

it out. Call the quotient group Z., and let h denote the image of r). Then we claim that
the diameter of r(aj) grows as 2log2(k), where k is the number of vertices, an improve-

ment over the diameter log&(k), obtained for the cube-connected cycles.
2

Proposition: The diameter of r'(Z,,h) grows as 2log k().

Proof. By taking inverses, we can clearly consider the graph

%here (gw) is an edge for wcn. An element of Zr. is given by an ordered pair (m,v), where

25

,,, Zln, v, Zl2)*l(1, ..

The multiplication is given by

(m,v)e = (m,v+e), (m,v)T- (m+1,p(T)v), and(m,t)T' =, (m-1,p(T)-v).

An algorithm for expressing (m,v) in terms of the generators T, T- 1, and e, is described
as:

Let zl(v) denote the first coordinate of a vector TcV-d-(Z/2). For any vcV, one may lift
v to an element I of V, so that the number of non-zero coordinates in T is <n/2, for if
one lifted T does not have this property, then I + (1, 1, ..., 1) does. Given (m,v), select TY

as above.

The algorithm now proceeds as follows:

a. Initialize a counter a at n-1.

b. Is z1(-v) = 0? If yes, proceed to (d), if no, proceed to (c).

e. Multiply by el. Proceed to (d).

d. Multiply by T, and decrement a by 1. Proceed to (e).

e. Is a = 0? If so, proceed to VI. If not, return to (b).

f. If m 3 0, multiply by T4, where q is the number of minimal absolute value

congruent to -n mod n. Note that Jl<_5. Quit.

Since T has at most n/2 Is, we only multiply by el at most n/2 times. Thus, the
total number of steps is at most (n-l)+n/2+n/2 = 2n-1. For odd n, it is at most
2n-3, which is of the same order as 21og 242"-').

If one forms the quotient of this graph by the equivalence relation (m,v) O (rn',v)
for all m,m/nZ/, one obtains a non-regular family of graphs whose diameter grows as
31og 2(n), which is comparable to that obtained in Reference [71, and for which the

routing algorithm is much simpler. Finally, an alternative version of this construc-
tion is given by forming the

26

(n-1)-cube, inserting n-cycles at every vertex so that the incoming edges each con-
nect at distinct vertices, and connect the remaining vertex to the corresponding ver-
tex for the antipodal point on the cube.

4.3.5 A Layout for the Modified Cube-Connected Cycles.
In the paper Reference (11, two layouts are proposed for the cube-connected cycles,

one slightly more efficient than the other. By combining these two layouts, we obtain a
layout for the modified cube-connected cycles. The area of the layout grows as 3/2 times
the area of the cube-connected cycles with the same number of nodes, and has commun-
ication time roughly 4/5 times that of the cube-connected cycles. We give the layout for
the case n=5, corresponding to 5-2 - 80 nodes. It is clear from the diagram (Figure 4.2)
how to extend to the general case.

I

Figure 4.2. A layout for the modified cube-connected cycles

4.4 References

[1). Preparata, F. and Vuillemin, J1., 'The cube-connected cycles: a versatile net-
work for parallel computation,' Communication of the ACM, Vol 24, No. 5, May

191

27

,.,la ,--,

- .rll
'

..

[2]. Bolloba's, B., Extremal Graph Theory, Academic Press, 1978.

[3]. Biggs, N., Algebraic Graph Theory, Cambridge University Press, 1974.

[4]. Toueg, S. and Steiglitz, K., 'The design of small-diameter networks by local
search,I IEEE Transactions on Computers 28(7), 1979.

[5]. Leland, W., Finkel, R., Qiao, L., Solomon, M., and Uhr, L., 'High density
graphs for processor interconnection,' Information Processing Letters, Vol. 12, No.
3, 1981.

[6]. Storwick, R. M., 'Improved construction techniques for (d,k) graphs," IEEE
Transactions on Computers, 19(12), 1970.

[7]. Leland, W. and Solomon, M., 'Dense trivalent graphs for processor interconnec-
tion,' IEEE Transactions on Computers, Vol C-31, No. 3, Mar 1982.

, t ,

I

5. Modular Hardware Description Language

5.1 Introduction

This chapter describes a modular hardware description language (MHDL) developed
to provide an easy means of simulating the numerical, and other high-level, behavior of
novel computer architectures, especially those proposed for real-time signal processing
applications. The principle goals of MHfDL are:

a. Easy specification of elementary building blocks (machines) at an algorithmic
level.

b. Automatic reproduction of any number of already designed modules and easy
specification of interconnection schemes for these modules to produce new modules.

c. The behavior and performance of the resulting machines simulated by the com-
piled MHDL code.

This language was developed on and for computer systems using UNIX"
operating systems. While it could be modified to run on any system supporting the
C programming language, only its use on UNIX systems is discussed here, and make
use of programs available on UNIX with little cr no comment.

The remaining sections of this chapter give a brief description of the procedure
for installing MHDL on a system (which may be in practice less than automatic due
to differences in C compilers even among "standard" UNIX systems), and for com-
piling MDHL programs. We also describe the syntax and grammar of the language,
and discuss possible future improvements of the language. Examples of MHDL pro-
grams and source listings for the compiler may be found in Reference [1.

5.2 MHDL

5.2.1. Components of the Compiler

The compiler consists of the following files:

lexer.c

This is the source file for the lexical analyzer for MHDL. It breaks the input stream
from a MHDL program into tokens, and stores all identifiers in a symbol table.
Although ez was not used for this lexical analyzer, much of the structure of the lexicil

Is UNI is a registered tfadeadr of Befl Laboratewies.

3,

analyzer remains compatible with the lex environment.

mhdlyacc

This is the source file for the MHDL parser and code generator. It receives the input
stream and tokens from the lexical analyzer, checks for any syntax errors, and generates
appropriate code in the language C. Since the syntax for MHDL is very straightforward,
only a modest number of error messages have been included in the parser.

ytab.c

y.tab.h

These are files produced when yacc is run on mhdlyacc.

declar.h

This contains all the global declarations for the combined program of lexer.c with
mhdlyacc.

Makeflle

This is the makefile for mhdl. The command make mhdl will create the file mhdl
which contains the object file for the compiler. Note that the files Makefile, declar.h,
mhydlyacc, and lexer.c must all be present to be able to "make" mhdl.

mhdl

This is the object file for the MHDL compiler. It is produced by Makefile using the
command make mhdl.

xxmhdl.c
xxmhdl.global
xxmhdl.proced
xxmhdi.declar
yymhdl.c

These files are all produced when mhdl compiles a MHDL program. The four files of
the form xxmhdl.* are always produced by mhdl. The file yymhdl.c, which is simply a
readable version of the xxmhdl files, is only produced if the mhdl compiler detects no er-
rors. Note that if the C compiler finds errors in the program it is much easier, if not
completely necessary, to work with yymhdl.c rather than the xxmhdl.* version.

5.2.2. Using the Compiler

A file called mhd1 is needed to compile a MHDL program. If this file does not exist

on your system, then see the discussion in Section 2a to obtain a copy of this file. The
steps for using MHDL are the following:

30

a. Enter mhdl MHDLgrogram (a MHDL program may consist of several files).

b. Correct all errors reported by the MHDL compiler and repeat step a.

c. Enter cc yymhdl.c.

d. Correct all errors reported by the C compiler using the file pymhdl.c for refer-
ence, and repeat steps a, b, and c.

e. Enter a.out or a.out < datafile depending on whether you wish to use standard
input or an already prepared input file. (The string "datafile" shouldn't be inter-
preted as a literal.)

5.3 Description of the Language

5.3.1 Syntax and Grammar

A MtlDL program is made up of a sequence of blocks. Each block may be any one
of tne following types:

Primitive Module
Module
Global
'rocedure

Connection Scheme
Configuration

'Ih e syntax for each of these blocks is illustrated below:

Primitive Module <module name>

Parameter < var. dels. >
Input <var. decls.>
Output , var. deals.>
Inout, ,, var. decls.>
State <rar. dccls.>
Uses

Procedure <procedure names>
End Uses
1ehavlor

< C rode>

End Primitive Module <module name>

31

-P L j1jj11111 !- now... i --. l. = L . - . .. - : -

Module <module name>

Parameter <var. decs.>
Input <var. decls.>
Output <var. decls.>
Inout <var. dects.>
Uses

Primitive Module <prim. mod. name [no. of times used]>
Module <mod. name [no. of times usedJ>
Connection Scheme <connection scheme name>
Configuration <configuration name>
Procedure <procedure name>

End Uses
Behavior
< C code>

End Module <module name>

Global

< C code>

End Global

Procedure <procedure name>
< C procedure>

End Procedure <procedure name>

Connection Scheme <scheme name>
End Connection Scheme <scheme name>

Configuration < configuration name>
End Configuration <configuration name>

ae following is slightly informal Backus-Naur form for the grammar for MHDL.
Literals are in boldface. Alternatives are separated by a vertical bar 'I'. A group that
may be repeated a certain number of times is enclosed in braces, "{' and '0, with the
number of repetitions indicated by '+' to indicate 1 or more repetitions and a W*' to
indicate 0 or more repetitions. Optional terms are enclosed in W[W and W] , and any

32

terms starting with C- are meant to refer to the corresponding objects in the language
C.

program -. { block } +

block --

{ prim-module-block I module-block I global-block f procedure-block I connect-
scheme-block I config-block I whitespace)

prim-module-block --

Primitive whitespace Module whitespace block-name whitespace
var-declarations
State C-code
[Uses (Procedure identifier)* End whitespace Uses
Behavior C-code
End whitespace Primitive whitespace Module
whitespace block-name

module-block -.

Module whitespace block-name whitespace
var-declarations
Uses

{ { (Primitive whitespace Module I Module}
{ whitespace identifier [C-code I }+ } I
Procedure whitespace (identifier)+
Configuration whitespace (identifier)+ I
Connection whitespace Scheme whitespace {identifier) + } +

End whitespace Uses
Behavior C-code
End whitespace Module whitespace block-name

global-block -- Global C-code End whitespaee Global

331

procedure-block --

Procedure whitespace block-name C-code
End whitespace Procedure whitespace block-name

connect-scheme-block -.

Connection whitespace Scheme
whitespace block-name C-code

End whitespace Connection whitespace block-name C-code

config-block

Configuration whitespace block-name C-code
End whitespace Configuration whitespace block-name
block-name -. C-identifier p

var-declarations

[Parameter C-variable-declarations]
[Input C-variable- declarations)
[Output C-variable-declarations]
[Inout C- variable-declarations]

whitespace -. { C-uwhitespace I MHDL-comment)+
MHIDL-comment -, $ (any character except NEWLINE or FORM-FEED)*

5.3.2 MHDL Semantlees - How MHDL 'runs' a Module

The Module and Primitive Module blocks are the only ones in this version of
MHIDL that have nontrivial behavior. Configuration and Connection Scheme blocks are
unsupported in this version and cause an error message. The C-code in Global and Pro-
cedure blocks is copied directly to sections qf the produced code external to all other
procedures. The code in a Global block is guaranteed to appear before all other codes.

The two kinds of modules, primitive and non-primitive, are set up in very different
ways. For primitive modules all of the input and output variables, together with the
state variables, are put together as one structure declaration. The number of times this
primitive module is used in the machine being described is counted and an array of glo-

34

bal variables is declared with the type of the structure just created. As the global
machine runs, bookkeeping is done to keep track of the index of the current primitive
module that is actually running. Only the I/O and state variables for that particular
copy of the primitive module are affected. Running a primitive module amounts to exe-
cuting the code in the Behavior section exactly as it appears, except that all I/O and
state variables are preceded with an array structure pointer.

For non-primitive modules all of the input and output variables are used to create a
global variable in the same manner as what was done for primitive modules. Bookkeep-
ing for the current running copy of the module is also done in the same way as for prim-
itive modules. Running a non-primitive module should be thought of as occurring in two
steps. In the first step, the Behavior section of the module is executed as it appears, and
has this module to various inputs of its submodules. For the second step, the Uses de-
claration is used to count the number of times a submodule is used to make up this
module, and the submodule is simply run that many times, incrementing the index of
the submodule for each run. There is a distinguished module with name "Main" that is
always the module representing the global machine. The program created by MHDL has
as its only task the running of Main until something in the MHDL program causes the
program to terminate (usually caused by executing a ezit) in one of the primitive
modules).

5.4 Possible Improvements

The present version of MHDL was designed as a prototype and as such many possi-
ble extensions or changes were not incorporated until more experience had been gained
with language. The following list of changes contains features that the designer would
most like to see improved. Many of these features may not appeal to general users, and
many may no longer be appropriate if the intended use of this language should shift.

a. Allow levels of nesting of modules.

The current version allows only one level of nesting, and this is clearly too res-
trictive for general use on larger problems.

b. Allow Global Declarations within Modules

The language should promote module structure by not forcing the user to put
global declarations in a separate block.

e. Increase debugging facilities

(1) Test Connection Structure for 0 or Multiple Connections.
(2) Check that a module's I/O variables are only used in an appropriate way

(e.g., that Input variables are only used on the right sides of equations).
(3) Allov easy (or automatic) printout of the values for I/O and state variables

36

to aid user debugging.

d. Allow Identifiers to use any Number of Significant Letters.

e. Develop Connection Scheme Concept Beyond linear Numbering.

f. Allow Multiple and Conditional Calls of Modules.

The multiple calls would be useful for example when a module operating at the
word level uses a module operating at the bit level. Conditional calls could be useful
if certain electronic characteristics wished to be simulated at the MHDL level (rath-
er than hidden in the user's code).

g. Develop Parameter Concept for Modules.

h. Improve Initialization Facilities

Several types of initialization are now awkward within MHDL and could be
greatly improved. Currently all I/O and state variables are initialized to the value
0, and there is no mechanism for other initialization values. Along the same lines,
files need to be opened for use and currently only standard input and output are
easily accessed.

5.5 References

[1]. Wright, C. G., 'Modular Hardware Description Language,' Computer Sciences
Corporation TR, 20 September 1983.

as

A graph (tCOS.)

A Heuristic Algorithm, 21 edge, 6
abstract machine, 4 node, 6
admissible 4-tuple, 22 path, 7
automorphism regular, 7

of a graph, 8 vertex, 6
group

C cyclic, 7
Cayley graph definition, 7

definition, 7
examples, 25 H

cube-connected cycles, 25 heuristic search
cycle perturbation, 21

definition, 20 summary of results, 23
table of best graphs, 24

D
degree I

of a graph, 7 identity element, 7
diameter incidence matrix

for r(s,,Ok), 25 definition, 21
of a graph, 7 use in search algorithm, 21
relation to communication costs, 19 inverse element, 7

diameter vector K
for graphs, 21 (kl)-separated multipath, 19

distance k-separated distance, 19
between nodes in a graph, 7 k-separated multipath, 19

E L
edge, 6 lexicographic ordering, 21

G M
girth MDHL

definition, 20 structure, 32
facts about, 20 MHDL

Givens rotation components, 30
definition, 10 purpose, 30
properties of, 11 using, 31

graph modified cube-connected cycles, 26
automorphism, 8 Moore bound, 18
definition, 6
degree, 7 N
diameter, 7 node, 6
diameter vector, 21 node transitive, 8
distance between nodes, 7 examples, 25

37

K q . k m. : - t~ -_ - -
-

-- -y -_ _ |r - : . .. -- .- -

Notation:
a(r), 7
dk, 19
ar), 19
A r,o, 10

e, 7
F, 6
G, 7
r(G,n), 7
G1 ijk), 10
1(r), 21
Vk, 20
R(ij,9), 9
v1r), 22
i4 19
n, 7
Z/n, 7

P
path, 7

perturbed graph
in search algorithm, 21

R
regular graph, 7

S
SMN, 4

cascade, 6
conjunction, 6

T
time complexity, 8
transitive

node or vertex, 8
tridiagonal matrix, 9
tridiagonalization

time complexity for general arrays, 12
time complexity for systolic arrays, 13

V

vertex, 6
vertex transitive, 8

83

